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Problem Definition
• Given 

 X1 ,  … Xn : variables with finite discrete domains D1, … Dn

 Constraint (logical formula)  F  over  X1 ,  … Xn

 Weight function  W: D1  … Dn   0

Let RF: set of assignments of X1 , … Xn that satisfy F

 Determine W(RF) =  y  RF
W(y)

If W(y) = 1 for all y, then W(RF) = | RF |

 Randomly sample from RF such that Pr[y is sampled]  W(y)

If W(y) = 1 for all y, then uniformly sample from RF

Suffices to consider all domains as {0, 1}: assume for this tutorial 1

Discrete Integration  

(Model Counting)

Discrete Sampling



Discrete Integration: An Application

• Probabilistic Inference
 An alarm rings if it’s in a working state when an earthquake happens 

or a burglary happens

 The alarm can malfunction and ring without earthquake or burglary
happening

 Given that the alarm rang, what is the likelihood that an earthquake
happened?

 Given conditional dependencies (and conditional probabilities) 
calculate Pr[event | evidence]

 What is Pr [Earthquake | Alarm] ?
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Discrete Integration: An Application
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Probabilistic Inference: Bayes’ rule to the rescue

How do we represent conditional dependencies 

efficiently, and calculate these probabilities?
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Discrete Integration: An Application
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B E

A

B E A Pr(A|E,B)

Probabilistic Graphical Models

Conditional Probability Tables (CPT)
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A

Pr 𝐸 ∩ 𝐴
= Pr 𝐸 ∗ Pr ¬𝐵 ∗ Pr 𝐴 𝐸,¬𝐵

+Pr 𝐸 ∗ Pr 𝐵 ∗ Pr[𝐴|𝐸, 𝐵]

Discrete Integration: An Application

B E A Pr(A|E,B)



Discrete Integration: An Application
• Probabilistic Inference:  From probabilities to logic

V = {vA, v~A, vB, v~B, vE, v~E}                 Prop vars corresponding to events

T = {tA|B,E , t~A|B,E , tA|B,~E …}       Prop vars corresponding to CPT entries

Formula encoding probabilistic graphical model (PGM):

(vA  v~A)  (vB  v~B)  (vE  v~E)          Exactly one of vA and v~A is true


(tA|B,E  vA  vB  vE)   (t~A|B,E  v~A  vB  vE)  …

If vA , vB , vE are true, so must  tA|B,E and vice versa
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Discrete Integration: An Application
• Probabilistic Inference:  From probabilities to logic and weights

V = {vA, v~A, vB, v~B, vE, v~E}

T = {tA|B,E , t~A|B,E , tA|B,~E …}

W(v~B) = 0.2, W(vB) = 0.8         Probabilities of indep events are weights of +ve literals

W(v~E) = 0.1, W(vE) = 0.9 

W(tA|B,E) = 0.3, W(t~A|B,E) = 0.7, …                     CPT entries are weights of +ve literals

W(vA) = W(v~A) = 1                       Weights of vars corresponding to dependent events

W(v~B) = W(vB) = W( tA|B,E) … = 1                            Weights of -ve literals are all 1

Weight of assignment  (vA = 1, v~A = 0, tA|B,E = 1, …) = W(vA) * W(v~A)* W( tA|B,E)* … 

Product of weights of literals in assignment 7



Discrete Integration: An Application
• Probabilistic Inference:  From probabilities to logic and weights

V = {vA, v~A, vB, v~B, vE, v~E}

T = {tA|B,E , t~A|B,E , tA|B,~E …}

Formula encoding combination of events in probabilistic model 

(Alarm and Earthquake)    F =  PGM  vA  vE

Set of satisfying assignments of F:  

RF = { (vA = 1, vE = 1, vB = 1, tA|B,E = 1, all else 0), (vA = 1, vE = 1, v~B = 1, tA|~B,E = 1, all else 0) }

Weight of satisfying assignments of F:

W(RF) = W(vA) * W(vE) * W(vB) * W(tA|B,E ) + W(vA) * W(vE) * W(v~B) * W(tA|~B,E ) 

= 1* Pr[E] * Pr[B] * Pr[A | B,E]  + 1* Pr[E] * Pr[~B] * Pr[A | ~B,E]  =  Pr[ A ∩ E] 8



Discrete Integration: An Application

B E

A

Pr[𝐸|𝐴] Weighted 

Model 

CountingRoth 1996
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Weighted Model Counting      Unweighted Model Counting

Reduction polynomial in #bits representing CPT entries

From probabilistic inference to unweighted model counting

IJCAI 2015



Discrete Sampling: An Application

Functional Verification

• Formal verification

Challenges: formal requirements, scalability

~10-15% of verification effort 

• Dynamic verification: dominant approach

10



Discrete Sampling: An Application

Design is simulated with test vectors

• Test vectors represent different verification scenarios 

Results from simulation compared to intended results

How do we generate test vectors?

Challenge: Exceedingly large test input space!

Can’t try all input combinations

2128 combinations for a 64-bit binary operator!!!

11



Discrete Sampling: An Application

12
 Test vectors: solutions of constraints

 Proposed by Lichtenstein, Malka, Aharon (IAAI 94) 

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers: 

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience: 

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200



Discrete Sampling: An Application

13

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constraints

• Designers: 

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience: 

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Modern SAT/SMT solvers are complex systems

Efficiency stems from the solver automatically “biasing”  search

Fails to give unbiased or user-biased distribution of  test vectors



Discrete Sampling: An Application

14

Set of Constraints

Sample satisfying assignments 

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constrained Random Verification



Discrete Integration and Sampling

• Many, many more applications
 Physics, economics, network reliability estimation, …

• Discrete integration and discrete sampling are closely related
 Insights into solving one efficiently and approximately can often be 

carried over to solving the other

 More coming in subsequent slides …
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Agenda (Part I)

• Hardness of counting/integration and sampling

• Early work on counting and sampling

• Universal hashing

• Universal-hashing based algorithms: an overview

16



How Hard is it to Count/Sample? 
• Trivial if we could enumerate RF:  Almost always impractical

• Computational complexity of counting (discrete integration):

Exact unweighted counting: #P-complete [Valiant 1978]

Approximate unweighted counting:

Deterministic: Polynomial time det. Turing Machine with 2

p  
oracle [Stockmeyer 1983]

Randomized: Polynomial time probabilistic Turing Machine with NP oracle 

[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]

Probably Approximately Correct (PAC) algorithm

Weighted versions of counting: Exact:  #P-complete [Roth 1996],               

Approximate: same class as unweighted version [follows from Roth 1996]
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How Hard is it to Count/Sample?

• Computational complexity of sampling:

Uniform sampling: Polynomial time prob. Turing Machine with NP oracle

[Bellare,Goldreich,Petrank 2000]

Almost uniform sampling: Polynomial time prob. Turing Machine  with NP oracle

[Jerrum,Valiant,Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]
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Exact Counters

• DPLL based counters [CDP: Birnbaum,Lozinski 1999]
 DPLL branching search procedure, with partial truth assignments

 Once a branch is found satisfiable, if t out of n variables assigned, add 
2n-t to model count, backtrack to last decision point, flip decision and 
continue

 Requires data structure to check if all clauses are satisfied by partial 
assignment

Usually not implemented in modern DPLL SAT solvers

 Can output a lower bound at any time
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Exact Counters

• DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]

 Constraint graph G: 

Variables of F are vertices

An edge connects two vertices if corresponding variables appear in 

some clause of F

 Disjoint components of  G lazily identified during DPLL search

 F1, F2, … Fn : subformulas of F corresponding to components

|RF| = |RF1| * |RF2| * |RF3| * …

 Heuristic optimizations:

Solve most constrained sub-problems first

Solving sub-problems in interleaved manner

20



Exact Counters
• DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004, 

sharpSAT: Thurley 2006]

If same sub-formula revisited multiple times during DPLL search, cache 
result and re-use it

“Signature” of the satisfiable sub-formula/component must be stored

Different forms of caching used:

Simple sub-formula caching

Component caching

Linear-space caching

Component caching can also be combined with clause learning and 
other easoning techniques at each node of DPLL search tree

WeightedCachet:  DPLL + Caching for weighted assignments 21



Exact Counters

• Knowledge Compilation based
 Compile given formula to another form which allows counting models in time 

polynomial in representation size

 Reduced Ordered Binary Decision Diagrams (ROBDD)  [Bryant 1986]: 
Construction can blow up exponentially

 Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d: 
Darwiche 2004]

Generalizes ROBDDs; can be significantly more succinct

Negation normal form with following restrictions:

Decomposability:  All AND operators have arguments with disjoint  

support

Determinizability:  All OR operators have arguments with disjoint 

solution sets

 Sentential Decision Diagrams (SDD) [Darwiche 2011]

22



Exact Counters: How far do they go?

• Work reasonably well in small-medium sized problems, and 
in large problem instances with special structure

• Use them whenever possible
 #P-completeness hits back eventually – scalability suffers!

23



Bounding Counters

[MBound: Gomes et al 2006; SampleCount: Gomes et al 
2007; BPCount: Kroc et al 2008]

 Provide lower and/or upper bounds of model count 

 Usually more efficient than exact counters

 No approximation guarantees on bounds

Useful only for limited applications

24



Markov Chain Monte Carlo Techniques
• Rich body of theoretical work with applications to sampling and counting 

[Jerrum,Sinclair 1996]

• Some popular (and intensively studied) algorithms:
 Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing 

[Kirkpatrick et al 1982]

• High-level idea:
 Start from a “state” (assignment of variables)
 Randomly choose next state using “local” biasing functions (depends on target 

distribution & algorithm parameters)
 Repeat for an appropriately large number (N) of steps
 After N steps, samples follow target distribution with high confidence

• Convergence to desired distribution guaranteed only after N (large) steps

• In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Kuehlman 2007]

25



Hashing-based Sampling/Counting

• Extremely successful in recent years [CP2013, CAV2013, 

NIPS2013, DAC 2014, AAAI 2014, UAI 2014, NIPS 2014, ICML 2014, 
UAI 2015, ICML 2015, AAAI 2016, ICML 2016, IJCAI 2016, …]

• Focus of remainder of tutorial

• Hash functions:  
 Mappings from a (typically large) domain to a (smaller) range

 In our context,  h: {0,1}n   {0,1}m  , where n > m

26
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More on Hash Functions

• Good deterministic hash function:
 Inputs distributed uniformly   All cells are small in expectation

 But solutions of constraints can’t be considered random

• Universal hash functions [Carter,Wegman 1977; Sipser 1983]
 Define a family of hash functions H having some properties

Each h  H is a function: {0,1}n → {0,1}m

 Choose randomly one hash function h from H

 For every distribution of inputs, all cells are small and similar in expectation

Guarantees probabilistic properties of cell sizes even without knowing

distribution of inputs

 Used by Sipser (1983) for combinatorial optimization, by Stockmeyer (1983) 
for deterministic approximate counting

27



Universality of Hash Functions and Complexity
• H(n,m,r): Family of r-universal hash functions 

 h : {0,1}n → {0,1}
m

 For every X  {0,1}n and every 𝛼  {0,1}m 

Pr[ h(X) = 𝛼 | h chosen uniformly rand. from H ] = 1/2m

 For distinct X1, … Xr  {0,1}n and for every 𝛼1, … 𝛼𝑟 {0,1}m , 

Pr[h(X1) = 𝛼1 ∧ … ∧ h(Xr) = 𝛼𝑟 | h rand. From H ] = 1/2m.r

• Higher  r   Stronger guarantees on size of cells

Lower probability of large variations in cell sizes

• r-wise universality can be implemented using polynomials of degree r-1 in 
GF(2max(n,m))

Can be computationally challenging;  say n = r = 10000, m < n

• Lower r  Lower complexity of reasoning about r-universal hashing 28

Uniformity

Independence-like



2-Universal Hashing: Simple to Compute

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚, 
choose m random XORs

• Pick every variable with prob. ½ , 
XOR them and add 1 with prob. ½ 

• E.g.: X1⨁ X3⨁ X6⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR 
equation to 0 or 1 randomly

• The cell:  F∧XOR (CNF+XOR)

29

X1⨁ X3⨁ X6⨁ …. Xn-1 = 0

X1⨁ X2⨁ X4⨁ ….Xn-1 = 1

X1⨁ X3⨁ X5⨁ …. Xn-1 = 0

X2⨁ X3⨁ X4⨁ …. Xn-1 = 0

……

X1⨁ X2⨁ X3⨁ …. Xn-1 = 0

m 

XORs



2-Universal Hashing: Yet Powerful

• Let X be the number of solutions of F in an arbitrarily chosen cell
 What is 𝜇𝑋, and how much can X deviate from 𝜇𝑋?

• For every 𝑦 ∈ 𝑅𝐹, we define I𝑦 = ቊ
1, 𝑦 is in cell
0, otherwise

• X = σ𝑦∈𝑅𝐹
𝐼𝑦

 𝜇𝑋 =
|𝑅𝐹|

2𝑚
…...... From random choice of hash function

 𝜎𝑋
2 ≤ 𝜇𝑋…...... From 2-universality of hash function

• This gives the concentration bound:

Pr
𝜇𝑋
1 + 𝜖

≤ 𝑋 ≤ 𝜇𝑋 1 + 𝜖 ≥ 1 −
𝜎2

(
𝜀

1 + 𝜖
)2 𝜇𝑋

2
≥ 1 −

1

(
𝜀

1 + 𝜖
)2𝜇𝑋

Having  𝜇𝑋>k(1+
1

𝜖2
) gives us 1 −

1

𝑘
lower bound 30



Hashing-based Sampling

• Bellare, Goldreich, Petrank (BGP 2000)

• Uniform generator for SAT witnesses: 

• Polynomial time randomized algorithm with access to an NP oracle 

• Employs n-universal hash functions

• Works well for small values of n

• For high dimensions (large n), significant  computational overheads

31
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BGP 2000: Bird’s Eye View

• For right choice of m, all the cells are small (# of solutions ≤ 2𝑛2)
• Check if all the cells are small (NP- Query) 

• If yes, pick a solution randomly from randomly picked cell 

In practice, the query is too long and complex for large n, 

and can not be handled by modern SAT Solvers! 32

Partition using 

n-universal hash functions

2m partitions of {0,1}n

{0,1}n



Approximate Integration and Sampling: 
Close Cousins

Almost-Uniform 

Generator

PAC 

Counter

Polynomial

reduction

• Yet, no practical algorithms that scale to large problem 

instances were derived from this work

• No scalable PAC counter or almost-uniform generator  

existed until a few years back

• The inter-reductions are practically computation intensive

•Think of O(n) calls to the counter when n = 100000 33

• Seminal paper by Jerrum, Valiant, Vazirani 1986



Prior Work

34Performance
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Techniques using XOR hash functions

• Bounding counters MBound, SampleCount [Gomes et al. 
2006, Gomes et al 2007] used random XORs
 Algorithms geared towards finding bounds without approximation 

guarantees

 Power of 2-universal hashing not exploited

• In a series of papers [2013: ICML, UAI, NIPS; 2014: ICML; 
2015: ICML, UAI; 2016: AAAI, ICML, AISTATS, …] Ermon et 
al used XOR hash functions for discrete counting/sampling
 Random XORs, also XOR constraints with specific structures

 2-universality exploited to provide improved guarantees

 Relaxed constraints (like short XORs) and their effects studied

35



An Interesting Combination: 
XOR + MAP Optimization

• WISH: Ermon et al 2013

• Given a weight function W: {0,1}n  0

 Use random XORs to partition solutions into cells
 After partitioning into 2, 4, 8, 16, … cells

Use Max Aposteriori Probability (MAP) optimizer to find solution 
with max weight in a cell (say, a2, a4, a8, a16, …)

 Estimated  W(RF)  = W(a2)*1 + W(a4)*2 + W(a8)* 4 + …

• Constant factor approximation of W(RF) with high confidence

• MAP oracle needs repeated invokation O(n.log2n)
 MAP is NP-complete
 Being optimization (not decision) problem), MAP is harder to solve in 

practice than SAT 

36



XOR-based Counting Sampling

• Remainder of tutorial
 Deeper dive into XOR hash-based counting and sampling

 Discuss theoretical aspects and experimental observations

 Leverage power of modern SAT solvers for CNF + XOR clauses 
(CryptoMiniSAT)

 Based on work published in [2013: CP, CAV; 2014:  DAC, AAAI; 2015: 
IJCAI, TACAS; 2016: AAAI, IJCAI, …]

 Tutorial to focus mostly on unweighted case, to elucidate key ideas

37



Agenda (Part II) 

1. Hashing-based Approaches to Unweighted Model COunting

2. Hashing-based Approaches to Sampling

3. Design of Efficient Hash Functions

4. Summary

38
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0,1 𝑛

Solution to constraints

Counting Dots
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Partitioning into equal “small” cells



Partitioning into equal “small” cells

Pick a random cell

Estimate = # of solutions (dots) in cell * # of cells 41



How to Partition?

How to partition into roughly equal 

small cells of solutions without 

knowing the distribution of solutions? 

2-Universal Hashing

[Carter-Wegman 1977] 42



Partitioning

1. How large is the “small” cell? 

2. How do we compute solutions inside a cell?

3. How many cells?

43



Question 1: Size of cell

• Too large  Hard to enumerate

• Too small  Ratio of variance to mean is very high

44
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Question 2: Solving a cell

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚, 
choose m random XORs

• Pick every variable with prob. ½ , 
XOR them and add 1 with prob. ½ 

• E.g.: X1 ⨁ X3 ⨁ X6 ⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR 
equation to 0 or 1 randomly

• The cell:  F ∧ XOR (CNF+XOR)

45

X1 ⨁ X3 ⨁ X6 ⨁ …. Xn-1 = 0

X1 ⨁ X2 ⨁ X4 ⨁ ….Xn-1 = 1

X1 ⨁ X3 ⨁ X5 ⨁ …. Xn-1 = 0

X2 ⨁ X3 ⨁ X4 ⨁ …. Xn-1 = 0

……

X1 ⨁ X2 ⨁ X3 ⨁ …. Xn-1 = 0

m 

XORs



Question 3: How many cells?

• We want to partition into 2𝑚
∗
cells such that 2𝑚

∗
=

|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡

 Check for every m = 0,1….n if the number of solutions < pivot (function of 𝜀)

 Stop at the first m where number of solutions < pivot 

 Hash functions must be independent across different checks

• # of SAT calls is O(n) 

46(CP 2013)



ApproxMC(F,𝜀, 𝛿)

#sols < 

pivot

NO
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ApproxMC(F,𝜀, 𝛿)

#sols < 

pivot

NO
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ApproxMC(F,𝜀, 𝛿)

#sols < 

pivot
YES

Estimate: 

# of sols * 2𝑚

49



ApproxMC(F,𝜀, 𝛿)
Key Lemmas

Let 𝑚∗ = log
|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡
(i. e. , 2𝑚

∗
=

|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡
)

Lemma 1: The algorithm terminates with 𝑚 ∈ 𝑚∗ − 1 ,𝑚∗ with 
high probability 

Lemma 2: The estimate from a randomly picked cell for 𝑚 ∈
𝑚∗ − 1 ,𝑚∗ is correct with high probability 

50



Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 1 − 𝛿

Theorem 2:

ApproxMC(F,𝜀, 𝛿) makes O
𝑛 log

1

𝛿

𝜀2
calls to NP oracle

51

ApproxMC(F,𝜀, 𝛿)



Runtime Performance 
of ApproxMC

52



Can Solve a Large Class of Problems

53
Large class of problems that lie beyond the exact 

algorithms but can be computed by ApproxMC
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Mean Error: Only 4% (allowed: 75%)
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Mean error: 4% – much smaller than the 

theoretical guarantee of 75%
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Challenge

• Can we reduce the number of SAT calls from O(n)?

55

Experimental Observations

• ApproxMC “seems to work” even if we do not have 
independence across different hash functions
 Can we really give up independence? 



Beyond ApproxMC

• We want to partition into 2m cells
 Check for every m = 0,1….n if the number of solutions < pivot 

 Stop at the first m where number of solutions < pivot

 Hash functions must be independent across different checks

(Stockmeyer 1983, Jerrum, Valiant and Vazirani 1986…..)

• Suppose: Hash functions can be dependent across different checks

• # of solutions is monotonically non-increasing with m
 Can find the right value of m by search in any order. 

 Binary search

56



ApproxMC2: From Linear to Logarithmic SAT 
calls

• The Proof: Hash functions can be dependent across different 
checks

• Key Idea: Probability of making a bad choice early on is very 
small.
 Inversely (exponentially!) proportional to distance from m*)

57(IJCAI 2016)



Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC2(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 1 − 𝛿

Theorem 2:

ApproxMC2(F,𝜀, 𝛿) makes O
(log 𝑛) log

1

𝛿

𝜀2
calls to NP oracle

58

ApproxMC2(F,𝜀, 𝛿)

Theorem 1 requires a completely new proof. 



Runtime Performance Comparison
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Discrete Uniform Sampling
60



Hashing-based Approaches
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Key Ideas

Choose m

Choose ℎ ∈ 𝐻 𝑛,𝑚,∗

• For right choice of m, large number of cells are “small”

• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small” 

• If yes, pick a solution randomly from randomly picked cell 

62



Key Challenges

• F: Formula X: Set of variables  𝑅𝐹: Solution space

• 𝑅𝐹,ℎ,𝛼: Set of solutions for 𝐹 ∧ (ℎ 𝑋 = 𝛼) where

 ℎ ∈ 𝐻 𝑛,𝑚,∗ ; 𝛼 ∈ 0,1 𝑚

1. How large is “small” cell ?

2. How much universality do we need?

3. What is the value of m?
63



Size of cell

𝑝𝑖𝑣𝑜𝑡 = 5 1 +
1

𝜀2
;

64

Independence

Theorem (CMV 14):

3-universal hashing is sufficient to provide almost uniformity.

(3-universality of XOR-based hash functions due to Gomes et al. ) 

CAV 2013, DAC 2014



How many cells? 

• Our desire:  𝑚 = log
|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡
(Number of cells: 2m)

 But determining 𝑅𝐹 is expensive (#P complete)

• How about approximation?
 𝐴𝑝𝑝𝑟𝑜𝑥𝑀𝐶 𝐹, 𝜀, 𝛿 returns C:

Pr[
𝑅𝐹

1+𝜀
≤ 𝐶 ≤ 1 + 𝜀 |𝑅𝐹|] ≥ 1 − 𝛿

 𝑞 = log
𝐶

𝑝𝑖𝑣𝑜𝑡

 Concentrate on m = q-1, q, q+1 
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UniGen(F,𝜀)
1. C = ApproxMC(F,𝜀)

2. Compute pivot

3. 𝑞 = log 𝐶 − log 𝑝𝑖𝑣𝑜𝑡

4. for i in {q-1, q, q+1}:

5. Choose h randomly from H(n,i,3) 

6. Choose 𝛼 randomly from 0,1 𝑚

7. If (1 ≤ 𝑅𝐹,ℎ,𝛼 ≤ 𝑝𝑖𝑣𝑜𝑡):

8. Pick 𝑦 ∈ 𝑅𝐹,ℎ,𝛼 randomly

66

One time execution

Run for 

every sample 

required



Are we back to JVV (Jerrum, Valiant and 
Vazirani)?

NOT Really

•JVV makes linear (in n ) calls to Approximate 
counter compared to just 1 in UniGen

•# of calls to ApproxMC is only 1 regardless of the 
number of samples required unlike JVV 67



• Almost-Uniformity

For every solution 𝑦 ∈ 𝑅𝐹

∀𝑦 ∈ 𝑅𝐹 ,
1

1+𝜀 𝑅𝐹
≤ Pr[𝑦 is output ] ≤

1+𝜀

𝑅𝐹

 UniGen succeeds with probability ≥ 0.52

 In practice, success probabiliy ≥ 0.99

 UniGen makes O(
𝑛

𝜀2
) calls to NP oracle (SAT solver)

68

Theoretical Guarantees



Runtime Performance 
of UniGen
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1-2 Orders of Magnitude Faster
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Results: Uniformity

71
• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
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• Benchmark: case110.cnf;   #var: 287;  #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384
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Contribution of Hashing-based Approaches

• ApproxMC: The first scalable approximate model counter

• UniGen: The first scalable uniform generator

• Outperforms state-of-the-art generators/counters

73



Towards Efficient Hash 
Functions

74



• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚, 
choose m random XORs

• Pick every variable with prob. ½ , 
XOR them and add 1 with prob. ½ 

• E.g.: X1 ⨁ X3 ⨁ X6 ⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR 
equation to 0 or 1 randomly

• The cell:  F ∧ XOR (CNF+XOR)

75

X1 ⨁ X3 ⨁ X6 ⨁ …. Xn-3 = 0

X1 ⨁ X2 ⨁ X4 ⨁ ….Xn-1 = 1

X1 ⨁ X3 ⨁ X5 ⨁ …. Xn-2 = 0

X2 ⨁ X3 ⨁ X4 ⨁ …. Xn-1 = 0

……

X1 ⨁ X2 ⨁ X3 ⨁ …. Xn-1 = 0

m 

XORs

Parity-Based Hashing



Parity-Based Hashing

• Avg Length : n/2 

• Smaller parity constraints better performance

How to shorten XOR clauses? 
76



Inspired from Error Correcting Codes 

• X = # of solutions in a cell; 𝜇𝑋 =
|𝑅𝐹|

2𝑚

• 2-universal hashing ensures 𝜎𝑋
2 ≤ 𝜇𝑋

• Key result: Using sparse constraints of size O(log n), we have:

𝜎𝑋
2

𝜇𝑋
2 is monotonically decreasing with X

 Challenge: Unable to guarantee 𝜎𝑋
2 ≤ 𝜇𝑋; therefore weaker concentration 

inequalities

• The resulting algorithms require 𝜃(𝑛 log 𝑛) NP calls in comparison 
to O(log n) calls based on 2-universal hashing algorithms

77(Ermon et al 2014, 16; Achlioptas et al. 2015, Asteris et al 2016)



Independent Support

• Set I of variables such that assignments to these uniquely 
determine assignments to rest of variables (for satisfying 
assignments)

• If  𝜎1 and 𝜎2 agree on I  then 𝜎1 = 𝜎2

• c ⟷ (a V b) ; Independent Support I: {a, b}
 {a,c} is NOT an Independent Support

• Key Idea: Hash only on the independent variables

 Average size of XOR: 
𝑛

2
to 

|𝐼|

2

78CP 2015



Formal Definition
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Key Idea

80



Key Idea

81

𝐼 = {𝑥𝑖} is Independent Support iff 𝐻𝐼 ∧ Ω is unsatisfiable

where 𝐻𝐼 = 𝐻𝑖 𝑥𝑖 ∈ 𝐼}



Minimal Unsatisfiable Subset

• Given Ψ = 𝐻1 ∧ 𝐻2⋯𝐻𝑚 ∧ Ω

 Find subset {𝐻𝑖1, 𝐻𝑖2, ⋯𝐻𝑖𝑘} of {𝐻1, 𝐻2, ⋯𝐻𝑚} such that 𝐻𝑖1 ∧
𝐻𝑖2⋯𝐻𝑖𝑘 ∧ Ω is UNSAT

Unsatisfiable subset

 Find minimal subset {𝐻𝑖1, 𝐻𝑖2, ⋯𝐻𝑖𝑘} of {𝐻1, 𝐻2, ⋯𝐻𝑚} such that 𝐻𝑖1 ∧
𝐻𝑖2⋯𝐻𝑖𝑘 ∧ Ω is UNSAT

Minimal Unsatisfiable subset
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Minimal Independent Support

83

𝐼 = {𝑥𝑖} is minimal Independent Support iff 𝐻𝐼 is minimal 

unsatisfiable subset where 𝐻𝐼 = 𝐻𝑖 𝑥𝑖 ∈ 𝐼}



Key Idea
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Minimal 

Independent 

Support (MIS) 

Minimal 

Unsatisfiable

Subset (MUS)



Impact on Sampling and Counting 
Techniques
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MIS

Sampling
Tools

Counting 
Tools

F
I



What about complexity

• Computation of MUS: 𝐹𝑃𝑁𝑃

• Why solve a 𝐹𝑃𝑁𝑃 for almost-uniform 
generation/approximate counter (PTIME PTM with NP 
Oracle) 

Settling the debate through practice!

86



Performance Impact on Integration
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Performance Impact on Uniform Sampling
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Future Directions
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Extension to More Expressive domains

• Efficient hashing schemes 
 Extending bit-wise XOR to richer constraint domains provides guarantees 

but fails to harness progress in solving engines for richer domains

• Solvers to handle F + Hash efficiently
 CryptoMiniSAT has fueled progress for SAT domain
 Similar solvers for other domains? 

• Initial forays with bit-vector constraints and Boolector
[AAAI 2016]
 Uses new linear modular hash function that generalizes XOR-based 

hash functions
 Significant speedups compared to bit-blasted versions 
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Summary

• Sampling and Integration are fundamental problems in 
Artificial Intelligence.
 Applications from probabilistic inference, automatic problem 

generation to system verification.

• Drawback of related approaches: theoretical guarantees or 
scalability (Choose one)

• Hashing-based approaches promise theoretical guarantees 
and scalability
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Take Away:  Hashing-based Approaches

• Theoretical
Discrete Integration

 Reduction of NP calls from O(n log n) to  O(log n) 

 Efficient hash functions based on Independent support

Sampling
 Reduction of Approximate Counting calls from O(n) to O(1)

 Usage of 2-universal hash functions

• Practical
 From problems with tens of variables (before 2013) to hundreds of 

thousands of variables
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Thanks! 

Questions?

Software and papers are available at http://tinyurl.com/uai16tutorial
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http://tinyurl.com/uai16tutorial

