
Counting and Sampling
Solutions of SAT/SMT

Constraints

Supratik Chakraborty (IIT Bombay)

Joint work with Kuldeep S. Meel and Moshe Y. Vardi (Rice University)

[Extended version of slides presented at SAT/SMT/AR Summer School 2016, Lisbon]

Problem Definition
• Given

 X1 , … Xn : variables with finite discrete domains D1, … Dn

 Constraint (logical formula) F over X1 , … Xn

 Weight function W: D1  … Dn   0

Let RF: set of assignments of X1 , … Xn that satisfy F

 Determine W(RF) =  y  RF
W(y)

If W(y) = 1 for all y, then W(RF) = | RF |

 Randomly sample from RF such that Pr[y is sampled]  W(y)

If W(y) = 1 for all y, then uniformly sample from RF

Suffices to consider all domains as {0, 1}: assume for this tutorial 1

Discrete Integration

(Model Counting)

Discrete Sampling

Discrete Integration: An Application

• Probabilistic Inference
 An alarm rings if it’s in a working state when an earthquake happens

or a burglary happens

 The alarm can malfunction and ring without earthquake or burglary
happening

 Given that the alarm rang, what is the likelihood that an earthquake
happened?

 Given conditional dependencies (and conditional probabilities)
calculate Pr[event | evidence]

 What is Pr [Earthquake | Alarm] ?

2

Discrete Integration: An Application

3

Probabilistic Inference: Bayes’ rule to the rescue

How do we represent conditional dependencies

efficiently, and calculate these probabilities?

]Pr[]|Pr[]Pr[

]Pr[

]Pr[

]Pr[

]Pr[
]|Pr[

jjj

j

j

ii
i

eventeventevidenceevidenceevent

evidenceevent

evidenceevent

evidence

evidenceevent
evidenceevent













Discrete Integration: An Application

4

B E

A

B E A Pr(A|E,B)

Probabilistic Graphical Models

Conditional Probability Tables (CPT)

5

B E

A

Pr 𝐸 ∩ 𝐴
= Pr 𝐸 ∗ Pr ¬𝐵 ∗ Pr 𝐴 𝐸,¬𝐵

+Pr 𝐸 ∗ Pr 𝐵 ∗ Pr[𝐴|𝐸, 𝐵]

Discrete Integration: An Application

B E A Pr(A|E,B)

Discrete Integration: An Application
• Probabilistic Inference: From probabilities to logic

V = {vA, v~A, vB, v~B, vE, v~E} Prop vars corresponding to events

T = {tA|B,E , t~A|B,E , tA|B,~E …} Prop vars corresponding to CPT entries

Formula encoding probabilistic graphical model (PGM):

(vA  v~A)  (vB  v~B)  (vE  v~E) Exactly one of vA and v~A is true


(tA|B,E  vA  vB  vE)  (t~A|B,E  v~A  vB  vE)  …

If vA , vB , vE are true, so must tA|B,E and vice versa

6

Discrete Integration: An Application
• Probabilistic Inference: From probabilities to logic and weights

V = {vA, v~A, vB, v~B, vE, v~E}

T = {tA|B,E , t~A|B,E , tA|B,~E …}

W(v~B) = 0.2, W(vB) = 0.8 Probabilities of indep events are weights of +ve literals

W(v~E) = 0.1, W(vE) = 0.9

W(tA|B,E) = 0.3, W(t~A|B,E) = 0.7, … CPT entries are weights of +ve literals

W(vA) = W(v~A) = 1 Weights of vars corresponding to dependent events

W(v~B) = W(vB) = W( tA|B,E) … = 1 Weights of -ve literals are all 1

Weight of assignment (vA = 1, v~A = 0, tA|B,E = 1, …) = W(vA) * W(v~A)* W(tA|B,E)* …

Product of weights of literals in assignment 7

Discrete Integration: An Application
• Probabilistic Inference: From probabilities to logic and weights

V = {vA, v~A, vB, v~B, vE, v~E}

T = {tA|B,E , t~A|B,E , tA|B,~E …}

Formula encoding combination of events in probabilistic model

(Alarm and Earthquake) F = PGM  vA  vE

Set of satisfying assignments of F:

RF = { (vA = 1, vE = 1, vB = 1, tA|B,E = 1, all else 0), (vA = 1, vE = 1, v~B = 1, tA|~B,E = 1, all else 0) }

Weight of satisfying assignments of F:

W(RF) = W(vA) * W(vE) * W(vB) * W(tA|B,E) + W(vA) * W(vE) * W(v~B) * W(tA|~B,E)

= 1* Pr[E] * Pr[B] * Pr[A | B,E] + 1* Pr[E] * Pr[~B] * Pr[A | ~B,E] = Pr[A ∩ E] 8

Discrete Integration: An Application

B E

A

Pr[𝐸|𝐴] Weighted

Model

CountingRoth 1996

9

Weighted Model Counting Unweighted Model Counting

Reduction polynomial in #bits representing CPT entries

From probabilistic inference to unweighted model counting

IJCAI 2015

Discrete Sampling: An Application

Functional Verification

• Formal verification

Challenges: formal requirements, scalability

~10-15% of verification effort

• Dynamic verification: dominant approach

10

Discrete Sampling: An Application

Design is simulated with test vectors

• Test vectors represent different verification scenarios

Results from simulation compared to intended results

How do we generate test vectors?

Challenge: Exceedingly large test input space!

Can’t try all input combinations

2128 combinations for a 64-bit binary operator!!!

11

Discrete Sampling: An Application

12
 Test vectors: solutions of constraints

 Proposed by Lichtenstein, Malka, Aharon (IAAI 94)

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Sources for Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Discrete Sampling: An Application

13

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constraints

• Designers:

1. a +64 11 *32 b = 12

2. a <64 (b >> 4)

• Past Experience:

1. 40 <64 34 + a <64 5050

2. 120 <64 b <64 230

• Users:

1. 232 *32 a + b != 1100

2. 1020 <64 (b /64 2) +64 a <64 2200

Modern SAT/SMT solvers are complex systems

Efficiency stems from the solver automatically “biasing” search

Fails to give unbiased or user-biased distribution of test vectors

Discrete Sampling: An Application

14

Set of Constraints

Sample satisfying assignments

uniformly at random

SAT Formula

Scalable Uniform Generation of SAT Witnesses

a b

c

64 bit

64 bit

64 bit

c = f(a,b)

Constrained Random Verification

Discrete Integration and Sampling

• Many, many more applications
 Physics, economics, network reliability estimation, …

• Discrete integration and discrete sampling are closely related
 Insights into solving one efficiently and approximately can often be

carried over to solving the other

 More coming in subsequent slides …

15

Agenda (Part I)

• Hardness of counting/integration and sampling

• Early work on counting and sampling

• Universal hashing

• Universal-hashing based algorithms: an overview

16

How Hard is it to Count/Sample?
• Trivial if we could enumerate RF: Almost always impractical

• Computational complexity of counting (discrete integration):

Exact unweighted counting: #P-complete [Valiant 1978]

Approximate unweighted counting:

Deterministic: Polynomial time det. Turing Machine with 2

p
oracle [Stockmeyer 1983]

Randomized: Polynomial time probabilistic Turing Machine with NP oracle

[Stockmeyer 1983; Jerrum,Valiant,Vazirani 1986]

Probably Approximately Correct (PAC) algorithm

Weighted versions of counting: Exact: #P-complete [Roth 1996],

Approximate: same class as unweighted version [follows from Roth 1996]

17

0for),1(||) e(F,DetEstimat
1

||






F

F R
R

10,0for ,1)1(||), te(F,RandEstima
1

||
Pr 














F

F R
R

How Hard is it to Count/Sample?

• Computational complexity of sampling:

Uniform sampling: Polynomial time prob. Turing Machine with NP oracle

[Bellare,Goldreich,Petrank 2000]

Almost uniform sampling: Polynomial time prob. Turing Machine with NP oracle

[Jerrum,Valiant,Vazirani 1986, also from Bellare,Goldreich,Petrank 2000]

18

R if of indep and0

R if 0
 where, erator(F)]UniformGenPr[

F

F










y yc

yc
cy










 F

F

R if of indep and0

R if 0
 where,)1()] r(F,AUGeneratoPr[

1 y yc

yc
cy

c




Pr[Algorithm outputs some y]  ½, if F is satisfiable

Exact Counters

• DPLL based counters [CDP: Birnbaum,Lozinski 1999]
 DPLL branching search procedure, with partial truth assignments

 Once a branch is found satisfiable, if t out of n variables assigned, add
2n-t to model count, backtrack to last decision point, flip decision and
continue

 Requires data structure to check if all clauses are satisfied by partial
assignment

Usually not implemented in modern DPLL SAT solvers

 Can output a lower bound at any time

19

Exact Counters

• DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]

 Constraint graph G:

Variables of F are vertices

An edge connects two vertices if corresponding variables appear in

some clause of F

 Disjoint components of G lazily identified during DPLL search

 F1, F2, … Fn : subformulas of F corresponding to components

|RF| = |RF1| * |RF2| * |RF3| * …

 Heuristic optimizations:

Solve most constrained sub-problems first

Solving sub-problems in interleaved manner

20

Exact Counters
• DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004,

sharpSAT: Thurley 2006]

If same sub-formula revisited multiple times during DPLL search, cache
result and re-use it

“Signature” of the satisfiable sub-formula/component must be stored

Different forms of caching used:

Simple sub-formula caching

Component caching

Linear-space caching

Component caching can also be combined with clause learning and
other easoning techniques at each node of DPLL search tree

WeightedCachet: DPLL + Caching for weighted assignments 21

Exact Counters

• Knowledge Compilation based
 Compile given formula to another form which allows counting models in time

polynomial in representation size

 Reduced Ordered Binary Decision Diagrams (ROBDD) [Bryant 1986]:
Construction can blow up exponentially

 Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d:
Darwiche 2004]

Generalizes ROBDDs; can be significantly more succinct

Negation normal form with following restrictions:

Decomposability: All AND operators have arguments with disjoint

support

Determinizability: All OR operators have arguments with disjoint

solution sets

 Sentential Decision Diagrams (SDD) [Darwiche 2011]

22

Exact Counters: How far do they go?

• Work reasonably well in small-medium sized problems, and
in large problem instances with special structure

• Use them whenever possible
 #P-completeness hits back eventually – scalability suffers!

23

Bounding Counters

[MBound: Gomes et al 2006; SampleCount: Gomes et al
2007; BPCount: Kroc et al 2008]

 Provide lower and/or upper bounds of model count

 Usually more efficient than exact counters

 No approximation guarantees on bounds

Useful only for limited applications

24

Markov Chain Monte Carlo Techniques
• Rich body of theoretical work with applications to sampling and counting

[Jerrum,Sinclair 1996]

• Some popular (and intensively studied) algorithms:
 Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing

[Kirkpatrick et al 1982]

• High-level idea:
 Start from a “state” (assignment of variables)
 Randomly choose next state using “local” biasing functions (depends on target

distribution & algorithm parameters)
 Repeat for an appropriately large number (N) of steps
 After N steps, samples follow target distribution with high confidence

• Convergence to desired distribution guaranteed only after N (large) steps

• In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Kuehlman 2007]

25

Hashing-based Sampling/Counting

• Extremely successful in recent years [CP2013, CAV2013,

NIPS2013, DAC 2014, AAAI 2014, UAI 2014, NIPS 2014, ICML 2014,
UAI 2015, ICML 2015, AAAI 2016, ICML 2016, IJCAI 2016, …]

• Focus of remainder of tutorial

• Hash functions:
 Mappings from a (typically large) domain to a (smaller) range

 In our context, h: {0,1}n  {0,1}m , where n > m

26

assignments

cellscells

More on Hash Functions

• Good deterministic hash function:
 Inputs distributed uniformly  All cells are small in expectation

 But solutions of constraints can’t be considered random

• Universal hash functions [Carter,Wegman 1977; Sipser 1983]
 Define a family of hash functions H having some properties

Each h  H is a function: {0,1}n → {0,1}m

 Choose randomly one hash function h from H

 For every distribution of inputs, all cells are small and similar in expectation

Guarantees probabilistic properties of cell sizes even without knowing

distribution of inputs

 Used by Sipser (1983) for combinatorial optimization, by Stockmeyer (1983)
for deterministic approximate counting

27

Universality of Hash Functions and Complexity
• H(n,m,r): Family of r-universal hash functions

 h : {0,1}n → {0,1}
m

 For every X  {0,1}n and every 𝛼  {0,1}m

Pr[h(X) = 𝛼 | h chosen uniformly rand. from H] = 1/2m

 For distinct X1, … Xr  {0,1}n and for every 𝛼1, … 𝛼𝑟 {0,1}m ,

Pr[h(X1) = 𝛼1 ∧ … ∧ h(Xr) = 𝛼𝑟 | h rand. From H] = 1/2m.r

• Higher r  Stronger guarantees on size of cells

Lower probability of large variations in cell sizes

• r-wise universality can be implemented using polynomials of degree r-1 in
GF(2max(n,m))

Can be computationally challenging; say n = r = 10000, m < n

• Lower r  Lower complexity of reasoning about r-universal hashing 28

Uniformity

Independence-like

2-Universal Hashing: Simple to Compute

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚,
choose m random XORs

• Pick every variable with prob. ½ ,
XOR them and add 1 with prob. ½

• E.g.: X1⨁ X3⨁ X6⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR
equation to 0 or 1 randomly

• The cell: F∧XOR (CNF+XOR)

29

X1⨁ X3⨁ X6⨁ …. Xn-1 = 0

X1⨁ X2⨁ X4⨁ ….Xn-1 = 1

X1⨁ X3⨁ X5⨁ …. Xn-1 = 0

X2⨁ X3⨁ X4⨁ …. Xn-1 = 0

……

X1⨁ X2⨁ X3⨁ …. Xn-1 = 0

m

XORs

2-Universal Hashing: Yet Powerful

• Let X be the number of solutions of F in an arbitrarily chosen cell
 What is 𝜇𝑋, and how much can X deviate from 𝜇𝑋?

• For every 𝑦 ∈ 𝑅𝐹, we define I𝑦 = ቊ
1, 𝑦 is in cell
0, otherwise

• X = σ𝑦∈𝑅𝐹
𝐼𝑦

 𝜇𝑋 =
|𝑅𝐹|

2𝑚
…...... From random choice of hash function

 𝜎𝑋
2 ≤ 𝜇𝑋…...... From 2-universality of hash function

• This gives the concentration bound:

Pr
𝜇𝑋
1 + 𝜖

≤ 𝑋 ≤ 𝜇𝑋 1 + 𝜖 ≥ 1 −
𝜎2

(
𝜀

1 + 𝜖
)2 𝜇𝑋

2
≥ 1 −

1

(
𝜀

1 + 𝜖
)2𝜇𝑋

Having 𝜇𝑋>k(1+
1

𝜖2
) gives us 1 −

1

𝑘
lower bound 30

Hashing-based Sampling

• Bellare, Goldreich, Petrank (BGP 2000)

• Uniform generator for SAT witnesses:

• Polynomial time randomized algorithm with access to an NP oracle

• Employs n-universal hash functions

• Works well for small values of n

• For high dimensions (large n), significant computational overheads

31










ycyc

y
y

 oft independen is where,R if)0(

R if 0
 BGP(F)]Pr[

F

F

BGP 2000: Bird’s Eye View

• For right choice of m, all the cells are small (# of solutions ≤ 2𝑛2)
• Check if all the cells are small (NP- Query)

• If yes, pick a solution randomly from randomly picked cell

In practice, the query is too long and complex for large n,

and can not be handled by modern SAT Solvers! 32

Partition using

n-universal hash functions

2m partitions of {0,1}n

{0,1}n

Approximate Integration and Sampling:
Close Cousins

Almost-Uniform

Generator

PAC

Counter

Polynomial

reduction

• Yet, no practical algorithms that scale to large problem

instances were derived from this work

• No scalable PAC counter or almost-uniform generator

existed until a few years back

• The inter-reductions are practically computation intensive

•Think of O(n) calls to the counter when n = 100000 33

• Seminal paper by Jerrum, Valiant, Vazirani 1986

Prior Work

34Performance

G
u

a
ra

n
te

e
s

MCMC

SAT-

Based

BGP

BDD/

other

exact

tech.

Techniques using XOR hash functions

• Bounding counters MBound, SampleCount [Gomes et al.
2006, Gomes et al 2007] used random XORs
 Algorithms geared towards finding bounds without approximation

guarantees

 Power of 2-universal hashing not exploited

• In a series of papers [2013: ICML, UAI, NIPS; 2014: ICML;
2015: ICML, UAI; 2016: AAAI, ICML, AISTATS, …] Ermon et
al used XOR hash functions for discrete counting/sampling
 Random XORs, also XOR constraints with specific structures

 2-universality exploited to provide improved guarantees

 Relaxed constraints (like short XORs) and their effects studied

35

An Interesting Combination:
XOR + MAP Optimization

• WISH: Ermon et al 2013

• Given a weight function W: {0,1}n  0

 Use random XORs to partition solutions into cells
 After partitioning into 2, 4, 8, 16, … cells

Use Max Aposteriori Probability (MAP) optimizer to find solution
with max weight in a cell (say, a2, a4, a8, a16, …)

 Estimated W(RF) = W(a2)*1 + W(a4)*2 + W(a8)* 4 + …

• Constant factor approximation of W(RF) with high confidence

• MAP oracle needs repeated invokation O(n.log2n)
 MAP is NP-complete
 Being optimization (not decision) problem), MAP is harder to solve in

practice than SAT

36

XOR-based Counting Sampling

• Remainder of tutorial
 Deeper dive into XOR hash-based counting and sampling

 Discuss theoretical aspects and experimental observations

 Leverage power of modern SAT solvers for CNF + XOR clauses
(CryptoMiniSAT)

 Based on work published in [2013: CP, CAV; 2014: DAC, AAAI; 2015:
IJCAI, TACAS; 2016: AAAI, IJCAI, …]

 Tutorial to focus mostly on unweighted case, to elucidate key ideas

37

Agenda (Part II)

1. Hashing-based Approaches to Unweighted Model COunting

2. Hashing-based Approaches to Sampling

3. Design of Efficient Hash Functions

4. Summary

38

39

0,1 𝑛

Solution to constraints

Counting Dots

40

Partitioning into equal “small” cells

Partitioning into equal “small” cells

Pick a random cell

Estimate = # of solutions (dots) in cell * # of cells 41

How to Partition?

How to partition into roughly equal

small cells of solutions without

knowing the distribution of solutions?

2-Universal Hashing

[Carter-Wegman 1977] 42

Partitioning

1. How large is the “small” cell?

2. How do we compute solutions inside a cell?

3. How many cells?

43

Question 1: Size of cell

• Too large  Hard to enumerate

• Too small  Ratio of variance to mean is very high

44

𝑝𝑖𝑣𝑜𝑡 = 5 1 +
1

𝜀2
;

Question 2: Solving a cell

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚,
choose m random XORs

• Pick every variable with prob. ½ ,
XOR them and add 1 with prob. ½

• E.g.: X1 ⨁ X3 ⨁ X6 ⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR
equation to 0 or 1 randomly

• The cell: F ∧ XOR (CNF+XOR)

45

X1 ⨁ X3 ⨁ X6 ⨁ …. Xn-1 = 0

X1 ⨁ X2 ⨁ X4 ⨁ ….Xn-1 = 1

X1 ⨁ X3 ⨁ X5 ⨁ …. Xn-1 = 0

X2 ⨁ X3 ⨁ X4 ⨁ …. Xn-1 = 0

……

X1 ⨁ X2 ⨁ X3 ⨁ …. Xn-1 = 0

m

XORs

Question 3: How many cells?

• We want to partition into 2𝑚
∗
cells such that 2𝑚

∗
=

|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡

 Check for every m = 0,1….n if the number of solutions < pivot (function of 𝜀)

 Stop at the first m where number of solutions < pivot

 Hash functions must be independent across different checks

• # of SAT calls is O(n)

46(CP 2013)

ApproxMC(F,𝜀, 𝛿)

#sols <

pivot

NO

47

ApproxMC(F,𝜀, 𝛿)

#sols <

pivot

NO

48

ApproxMC(F,𝜀, 𝛿)

#sols <

pivot
YES

Estimate:

of sols * 2𝑚

49

ApproxMC(F,𝜀, 𝛿)
Key Lemmas

Let 𝑚∗ = log
|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡
(i. e. , 2𝑚

∗
=

|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡
)

Lemma 1: The algorithm terminates with 𝑚 ∈ 𝑚∗ − 1 ,𝑚∗ with
high probability

Lemma 2: The estimate from a randomly picked cell for 𝑚 ∈
𝑚∗ − 1 ,𝑚∗ is correct with high probability

50

Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 1 − 𝛿

Theorem 2:

ApproxMC(F,𝜀, 𝛿) makes O
𝑛 log

1

𝛿

𝜀2
calls to NP oracle

51

ApproxMC(F,𝜀, 𝛿)

Runtime Performance
of ApproxMC

52

Can Solve a Large Class of Problems

53
Large class of problems that lie beyond the exact

algorithms but can be computed by ApproxMC

0

10000

20000

30000

40000

50000

60000

70000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

T
im

e
 (

s
e

c
o

n
d

s
)

Benchmarks

ApproxMC

Cachet

Mean Error: Only 4% (allowed: 75%)

54
Mean error: 4% – much smaller than the

theoretical guarantee of 75%

1.0E+00

3.2E+01

1.0E+03

3.3E+04

1.0E+06

3.4E+07

1.1E+09

3.4E+10

1.1E+12

3.5E+13

1.1E+15

3.6E+16

0 10 20 30 40 50 60 70 80 90

C
o

u
n

t

Benchmarks

Cachet*1.75

Cachet/1.75

ApproxMC

Challenge

• Can we reduce the number of SAT calls from O(n)?

55

Experimental Observations

• ApproxMC “seems to work” even if we do not have
independence across different hash functions
 Can we really give up independence?

Beyond ApproxMC

• We want to partition into 2m cells
 Check for every m = 0,1….n if the number of solutions < pivot

 Stop at the first m where number of solutions < pivot

 Hash functions must be independent across different checks

(Stockmeyer 1983, Jerrum, Valiant and Vazirani 1986…..)

• Suppose: Hash functions can be dependent across different checks

• # of solutions is monotonically non-increasing with m
 Can find the right value of m by search in any order.

 Binary search

56

ApproxMC2: From Linear to Logarithmic SAT
calls

• The Proof: Hash functions can be dependent across different
checks

• Key Idea: Probability of making a bad choice early on is very
small.
 Inversely (exponentially!) proportional to distance from m*)

57(IJCAI 2016)

Theorem 1:

Pr
𝑅𝐹
1 + 𝜀

≤ ApproxMC2(F,𝜀, 𝛿) ≤ 𝑅𝐹 1 + 𝜀 ≥ 1 − 𝛿

Theorem 2:

ApproxMC2(F,𝜀, 𝛿) makes O
(log 𝑛) log

1

𝛿

𝜀2
calls to NP oracle

58

ApproxMC2(F,𝜀, 𝛿)

Theorem 1 requires a completely new proof.

Runtime Performance Comparison

0

5000

10000

15000

20000

25000

	
	

tu
to

ri
a
l3

	
	

ca
s
e
2

0
4

	
	

ca
s
e
2

0
5

	
	

ca
s
e
1

3
3

s9
5
3

	
	

ll
re

v
e
rs

e

	
	

ll
tr

a
v
e
rs

a
l

so
rt

	
	

e
n

q
u

e
u

e
S

e
q

S
K

P
S

2
0

Time (s)

ApproxMC2 ApproxMC

Timeout

59

Discrete Uniform Sampling
60

Hashing-based Approaches

61Performance

G
u

a
ra

n
te

e
s

MCMC

SAT-

Based

BGP BDD

UniGen

CMV13, CMV14,

CFMSV14, CFMSV15,

IMMV15

Key Ideas

Choose m

Choose ℎ ∈ 𝐻 𝑛,𝑚,∗

• For right choice of m, large number of cells are “small”

• “almost all” the cells are “roughly” equal

• Check if a randomly picked cell is “small”

• If yes, pick a solution randomly from randomly picked cell

62

Key Challenges

• F: Formula X: Set of variables 𝑅𝐹: Solution space

• 𝑅𝐹,ℎ,𝛼: Set of solutions for 𝐹 ∧ (ℎ 𝑋 = 𝛼) where

 ℎ ∈ 𝐻 𝑛,𝑚,∗ ; 𝛼 ∈ 0,1 𝑚

1. How large is “small” cell ?

2. How much universality do we need?

3. What is the value of m?
63

Size of cell

𝑝𝑖𝑣𝑜𝑡 = 5 1 +
1

𝜀2
;

64

Independence

Theorem (CMV 14):

3-universal hashing is sufficient to provide almost uniformity.

(3-universality of XOR-based hash functions due to Gomes et al.)

CAV 2013, DAC 2014

How many cells?

• Our desire: 𝑚 = log
|𝑅𝐹|

𝑝𝑖𝑣𝑜𝑡
(Number of cells: 2m)

 But determining 𝑅𝐹 is expensive (#P complete)

• How about approximation?
 𝐴𝑝𝑝𝑟𝑜𝑥𝑀𝐶 𝐹, 𝜀, 𝛿 returns C:

Pr[
𝑅𝐹

1+𝜀
≤ 𝐶 ≤ 1 + 𝜀 |𝑅𝐹|] ≥ 1 − 𝛿

 𝑞 = log
𝐶

𝑝𝑖𝑣𝑜𝑡

 Concentrate on m = q-1, q, q+1

65

UniGen(F,𝜀)
1. C = ApproxMC(F,𝜀)

2. Compute pivot

3. 𝑞 = log 𝐶 − log 𝑝𝑖𝑣𝑜𝑡

4. for i in {q-1, q, q+1}:

5. Choose h randomly from H(n,i,3)

6. Choose 𝛼 randomly from 0,1 𝑚

7. If (1 ≤ 𝑅𝐹,ℎ,𝛼 ≤ 𝑝𝑖𝑣𝑜𝑡):

8. Pick 𝑦 ∈ 𝑅𝐹,ℎ,𝛼 randomly

66

One time execution

Run for

every sample

required

Are we back to JVV (Jerrum, Valiant and
Vazirani)?

NOT Really

•JVV makes linear (in n) calls to Approximate
counter compared to just 1 in UniGen

•# of calls to ApproxMC is only 1 regardless of the
number of samples required unlike JVV 67

• Almost-Uniformity

For every solution 𝑦 ∈ 𝑅𝐹

∀𝑦 ∈ 𝑅𝐹 ,
1

1+𝜀 𝑅𝐹
≤ Pr[𝑦 is output] ≤

1+𝜀

𝑅𝐹

 UniGen succeeds with probability ≥ 0.52

 In practice, success probabiliy ≥ 0.99

 UniGen makes O(
𝑛

𝜀2
) calls to NP oracle (SAT solver)

68

Theoretical Guarantees

Runtime Performance
of UniGen

69

1-2 Orders of Magnitude Faster

0.1

1

10

100

1000

10000

100000

ca
se
4
7

ca
se
_
3
_
b
1
4
_
3

ca
se
1
0
5

ca
se
8

ca
se
2
0
3

ca
se
1
4
5

ca
se
6
1

ca
se
9

ca
se
1
5

ca
se
1
4
0

ca
se
_
2
_
b
1
4
_
1

ca
se
_
3
_
b
1
4
_
1

sq
u
a
ri
n
g
1
4

sq
u
a
ri
n
g
7

ca
se
_
2
_
p
tb
_
1

ca
se
_
1
_
p
tb
_
1

ca
se
_
2
_
b
1
4
_
2

ca
se
_
3
_
b
1
4
_
2

Time(s)

Benchmarks

UniGen

XORSample'

70

Results: Uniformity

71
• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re
q
u
e
n
cy

#Solutions

72
• Benchmark: case110.cnf; #var: 287; #clauses: 1263

• Total Runs: 4x106; Total Solutions : 16384

0

50

100

150

200

250

300

350

400

450

500

184 208 228 248 268 288

F
re
q
u
e
n
cy

#Solutions

US

UniGen

Results: Uniformity

Contribution of Hashing-based Approaches

• ApproxMC: The first scalable approximate model counter

• UniGen: The first scalable uniform generator

• Outperforms state-of-the-art generators/counters

73

Towards Efficient Hash
Functions

74

• Variables: X1, X2, X3,….., Xn

• To construct h: 0,1 𝑛 → 0,1 𝑚,
choose m random XORs

• Pick every variable with prob. ½ ,
XOR them and add 1 with prob. ½

• E.g.: X1 ⨁ X3 ⨁ X6 ⨁ …. ⨁ Xn-1

• 𝛼 ∈ 0,1 𝑚 → Set every XOR
equation to 0 or 1 randomly

• The cell: F ∧ XOR (CNF+XOR)

75

X1 ⨁ X3 ⨁ X6 ⨁ …. Xn-3 = 0

X1 ⨁ X2 ⨁ X4 ⨁ ….Xn-1 = 1

X1 ⨁ X3 ⨁ X5 ⨁ …. Xn-2 = 0

X2 ⨁ X3 ⨁ X4 ⨁ …. Xn-1 = 0

……

X1 ⨁ X2 ⨁ X3 ⨁ …. Xn-1 = 0

m

XORs

Parity-Based Hashing

Parity-Based Hashing

• Avg Length : n/2

• Smaller parity constraints better performance

How to shorten XOR clauses?
76

Inspired from Error Correcting Codes

• X = # of solutions in a cell; 𝜇𝑋 =
|𝑅𝐹|

2𝑚

• 2-universal hashing ensures 𝜎𝑋
2 ≤ 𝜇𝑋

• Key result: Using sparse constraints of size O(log n), we have:

𝜎𝑋
2

𝜇𝑋
2 is monotonically decreasing with X

 Challenge: Unable to guarantee 𝜎𝑋
2 ≤ 𝜇𝑋; therefore weaker concentration

inequalities

• The resulting algorithms require 𝜃(𝑛 log 𝑛) NP calls in comparison
to O(log n) calls based on 2-universal hashing algorithms

77(Ermon et al 2014, 16; Achlioptas et al. 2015, Asteris et al 2016)

Independent Support

• Set I of variables such that assignments to these uniquely
determine assignments to rest of variables (for satisfying
assignments)

• If 𝜎1 and 𝜎2 agree on I then 𝜎1 = 𝜎2

• c ⟷ (a V b) ; Independent Support I: {a, b}
 {a,c} is NOT an Independent Support

• Key Idea: Hash only on the independent variables

 Average size of XOR:
𝑛

2
to

|𝐼|

2

78CP 2015

Formal Definition

79

Key Idea

80

Key Idea

81

𝐼 = {𝑥𝑖} is Independent Support iff 𝐻𝐼 ∧ Ω is unsatisfiable

where 𝐻𝐼 = 𝐻𝑖 𝑥𝑖 ∈ 𝐼}

Minimal Unsatisfiable Subset

• Given Ψ = 𝐻1 ∧ 𝐻2⋯𝐻𝑚 ∧ Ω

 Find subset {𝐻𝑖1, 𝐻𝑖2, ⋯𝐻𝑖𝑘} of {𝐻1, 𝐻2, ⋯𝐻𝑚} such that 𝐻𝑖1 ∧
𝐻𝑖2⋯𝐻𝑖𝑘 ∧ Ω is UNSAT

Unsatisfiable subset

 Find minimal subset {𝐻𝑖1, 𝐻𝑖2, ⋯𝐻𝑖𝑘} of {𝐻1, 𝐻2, ⋯𝐻𝑚} such that 𝐻𝑖1 ∧
𝐻𝑖2⋯𝐻𝑖𝑘 ∧ Ω is UNSAT

Minimal Unsatisfiable subset

82

Minimal Independent Support

83

𝐼 = {𝑥𝑖} is minimal Independent Support iff 𝐻𝐼 is minimal

unsatisfiable subset where 𝐻𝐼 = 𝐻𝑖 𝑥𝑖 ∈ 𝐼}

Key Idea

84

Minimal

Independent

Support (MIS)

Minimal

Unsatisfiable

Subset (MUS)

Impact on Sampling and Counting
Techniques

85

MIS

Sampling
Tools

Counting
Tools

F
I

What about complexity

• Computation of MUS: 𝐹𝑃𝑁𝑃

• Why solve a 𝐹𝑃𝑁𝑃 for almost-uniform
generation/approximate counter (PTIME PTM with NP
Oracle)

Settling the debate through practice!

86

Performance Impact on Integration

1.8

18

180

1800

18000

ApproxMC IApproxMC

87

Performance Impact on Uniform Sampling

88

0.018

0.18

1.8

18

180

1800

18000

UniGen UniGen1

Future Directions

89

Extension to More Expressive domains

• Efficient hashing schemes
 Extending bit-wise XOR to richer constraint domains provides guarantees

but fails to harness progress in solving engines for richer domains

• Solvers to handle F + Hash efficiently
 CryptoMiniSAT has fueled progress for SAT domain
 Similar solvers for other domains?

• Initial forays with bit-vector constraints and Boolector
[AAAI 2016]
 Uses new linear modular hash function that generalizes XOR-based

hash functions
 Significant speedups compared to bit-blasted versions

90

Summary

• Sampling and Integration are fundamental problems in
Artificial Intelligence.
 Applications from probabilistic inference, automatic problem

generation to system verification.

• Drawback of related approaches: theoretical guarantees or
scalability (Choose one)

• Hashing-based approaches promise theoretical guarantees
and scalability

91

Take Away: Hashing-based Approaches

• Theoretical
Discrete Integration

 Reduction of NP calls from O(n log n) to O(log n)

 Efficient hash functions based on Independent support

Sampling
 Reduction of Approximate Counting calls from O(n) to O(1)

 Usage of 2-universal hash functions

• Practical
 From problems with tens of variables (before 2013) to hundreds of

thousands of variables

92

Acknowledgements

93

Alexander Ivrii

(IBM)

Sharad Malik

(Princeton)

Sanjit Seshia

(UCB)

Dror Fried

(Rice)

Daniel Fremont

(UCB)

Mate Soos

(CMS)

Rakesh Mistry

(IITB)

Thanks!

Questions?

Software and papers are available at http://tinyurl.com/uai16tutorial

94

http://tinyurl.com/uai16tutorial

