Counting and Sampling Solutions of SAT/SMT Constraints

Supratik Chakraborty (IIT Bombay)

Joint work with Kuldeep S. Meel and Moshe Y. Vardi (Rice University)

[Extended version of slides presented at SAT/SMT/AR Summer School 2016, Lisbon]

Problem Definition

Given

- X_1 , ..., X_n : variables with finite discrete domains D_1 , ..., D_n
- Constraint (logical formula) F over X_1 , ... X_n
- Weight function W: $D_1 \times \dots D_n \rightarrow \Re^{\geq 0}$

Let R_F : set of assignments of X_1 , ... X_n that satisfy F

• Determine W(R_F) = $\sum_{y \in R_F} W(y)$ If W(y) = 1 for all y, then W(R_F) = $|R_F|$

Discrete Integration (Model Counting)

Randomly sample from R_F such that Pr[y is sampled] ∝ W(y)
 If W(y) = 1 for all y, then uniformly sample from R_F Discrete Sampling

Suffices to consider all domains as {0, 1}: assume for this tutorial

Probabilistic Inference

- An alarm rings if it's in a working state when an earthquake happens or a burglary happens
- The alarm can malfunction and ring without earthquake or burglary happening
- Given that the alarm rang, what is the likelihood that an earthquake happened?
- Given conditional dependencies (and conditional probabilities) calculate Pr[event | evidence]
 - What is **Pr [Earthquake | Alarm]** ?

Probabilistic Inference: Bayes' rule to the rescue

$$\Pr[event_i \mid evidence] = \frac{\Pr[event_i \cap evidence]}{\Pr[evidence]} = \frac{\Pr[event_i \cap evidence]}{\sum_j \Pr[event_j \cap evidence]}$$
$$\Pr[event_j \cap evidence] = \Pr[evidence \mid event_j] \times \Pr[event_j]$$

How do we represent conditional dependencies efficiently, and calculate these probabilities?

Discrete Integration: An Application Probabilistic Graphical Models

Probabilistic Inference: From probabilities to logic

 $V = \{v_A, v_{A}, v_B, v_B, v_E, v_E\}$ Prop vars corresponding to events $T = \{t_{A|B,E}, t_{A|B,E}, t_{A|B,-E} ...\}$ Prop vars corresponding to CPT entries

 $\begin{array}{l} \mbox{Formula encoding probabilistic graphical model (ϕ_{PGM})$:} \\ (v_A \oplus v_{\sim A}) \wedge (v_B \oplus v_{\sim B}) \wedge (v_E \oplus v_{\sim E}) & \mbox{Exactly one of } v_A \mbox{ and } v_{\sim A} \mbox{ is true} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\$

Probabilistic Inference: From probabilities to logic and weights

$$\begin{array}{ll} \mathsf{V} = \{\mathsf{v}_{\mathsf{A}},\,\mathsf{v}_{\mathsf{-A}},\,\mathsf{v}_{\mathsf{B}},\,\mathsf{v}_{\mathsf{-B}},\,\mathsf{v}_{\mathsf{E}},\,\mathsf{v}_{\mathsf{-E}}\} \\ \mathsf{T} = \{t_{\mathsf{A}|\mathsf{B},\mathsf{E}}\,,\,t_{\mathsf{-A}|\mathsf{B},\mathsf{E}}\,,\,t_{\mathsf{A}|\mathsf{B},\mathsf{-E}}\,\ldots\} \\ \mathsf{W}(\mathsf{v}_{\mathsf{-B}}) = 0.2,\,\mathsf{W}(\mathsf{v}_{\mathsf{B}}) = 0.8 & \mathsf{Probabilities of indep events are weights of +ve literals} \\ \mathsf{W}(\mathsf{v}_{\mathsf{-E}}) = 0.1,\,\mathsf{W}(\mathsf{v}_{\mathsf{E}}) = 0.9 \\ \mathsf{W}(t_{\mathsf{A}|\mathsf{B},\mathsf{E}}) = 0.3,\,\mathsf{W}(t_{\mathsf{-A}|\mathsf{B},\mathsf{E}}) = 0.7,\,\ldots & \mathsf{CPT} \text{ entries are weights of +ve literals} \\ \mathsf{W}(\mathsf{v}_{\mathsf{A}}) = \mathsf{W}(\mathsf{v}_{\mathsf{-A}}) = 1 & \mathsf{Weights of vars corresponding to dependent events} \\ \mathsf{W}(\neg\mathsf{v}_{\mathsf{-B}}) = \mathsf{W}(\neg\mathsf{v}_{\mathsf{B}}) = \mathsf{W}(\neg\mathsf{t}_{\mathsf{A}|\mathsf{B},\mathsf{E}})\,\ldots = 1 & \mathsf{Weights of -ve literals are all 1} \\ \end{array}$$

Weight of assignment $(v_A = 1, v_{-A} = 0, t_{A|B,E} = 1, ...) = W(v_A) * W(\neg v_{-A}) * W(t_{A|B,E}) * ...$ Product of weights of literals in assignment

- Probabilistic Inference: From probabilities to logic and weights
 - $V = \{ v_{A}, v_{-A}, v_{B}, v_{-B}, v_{E}, v_{-E} \}$ $T = \{ t_{A|B,E}, t_{-A|B,E}, t_{A|B,-E} \dots \}$

Formula encoding combination of events in probabilistic model

(Alarm and Earthquake) $F = \phi_{PGM} \wedge v_A \wedge v_E$

Set of satisfying assignments of F:

 $R_{F} = \{ (v_{A} = 1, v_{E} = 1, v_{B} = 1, t_{A|B,E} = 1, all else 0), (v_{A} = 1, v_{E} = 1, v_{-B} = 1, t_{A|-B,E} = 1, all else 0) \}$

Weight of satisfying assignments of F:

 $W(R_{F}) = W(v_{A}) * W(v_{E}) * W(v_{B}) * W(t_{A|B,E}) + W(v_{A}) * W(v_{E}) * W(v_{\sim B}) * W(t_{A|\sim B,E})$ = 1* Pr[E] * Pr[B] * Pr[A | B,E] + 1* Pr[E] * Pr[~B] * Pr[A | ~B,E] = Pr[A \cap E]

From probabilistic inference to unweighted model counting

Weighted Model Counting Duweighted Model Counting

Reduction polynomial in #bits representing CPT entries

Functional Verification

- Formal verification
 - · Challenges: formal requirements, scalability
 - ~10-15% of verification effort
- Dynamic verification: dominant approach

- Design is simulated with test vectors
- Test vectors represent different verification scenarios
- Results from simulation compared to intended results

How do we generate test vectors?
 Challenge: Exceedingly large test input space!
 Can't try all input combinations
 2¹²⁸ combinations for a 64-bit binary operator!!!

Sources for Constraints

- Designers:
 - 1. $a +_{64} 11 *_{32} b = 12$ 2. $a <_{64} (b >> 4)$
- Past Experience:
 - 1. 40 <₆₄ 34 + a <₆₄ 5050
 - 2. 120 <₆₄ b <₆₄ 230
- Users:
 - 1. 232 *₃₂ a + b != 1100
 - 2. 1020 <₆₄ (b /₆₄ 2) +₆₄ a <₆₄ 2200
- Test vectors: solutions of constraints

Constraints

• Designers:

1.
$$a +_{64} 11 *_{32} b = 12$$

2. $a <_{64} (b >> 4)$

- Past Experience:
 - 1. 40 <₆₄ 34 + a <₆₄ 5050
 - 2. 120 <₆₄ b <₆₄ 230
- Users:
 - 1. 232 *₃₂ a + b != 1100
 - 2. $1020 <_{64} (b /_{64} 2) +_{64} a <_{64} 2200$

Modern SAT/SMT solvers are complex systems

Efficiency stems from the solver automatically "biasing" search Fails to give unbiased or user-biased distribution of test vectors

Constrained Random Verification

Scalable Uniform Generation of SAT Witnesses

Discrete Integration and Sampling

- Many, many more applications
 - Physics, economics, network reliability estimation, ...
- Discrete integration and discrete sampling are closely related
 - Insights into solving one efficiently and approximately can often be carried over to solving the other
 - More coming in subsequent slides ...

Agenda (Part I)

- Hardness of counting/integration and sampling
- Early work on counting and sampling
- Universal hashing
- Universal-hashing based algorithms: an overview

How Hard is it to Count/Sample?

- Trivial if we could enumerate R_F: Almost always impractical
- Computational complexity of counting (discrete integration):

Exact unweighted counting: #P-complete [Valiant 1978]

Approximate unweighted counting:

Deterministic: Polynomial time det. Turing Machine with \sum_{2}^{p} oracle [Stockmeyer 1983] $\frac{|R_{F}|}{1+\varepsilon} \leq \text{DetEstimate}(F,\varepsilon) \leq |R_{F}| \times (1+\varepsilon), \text{ for } \varepsilon > 0$ Randomized: Polynomial time probabilistic Turing Machine with NP oracle [Stockmeyer 1983; Jerrum, Valiant, Vazirani 1986] $\Pr\left[\frac{|R_{F}|}{1+\varepsilon} \leq \text{RandEstimate}(F,\varepsilon,\delta) \leq |R_{F}| \cdot (1+\varepsilon)\right] \geq 1-\delta, \text{ for } \varepsilon > 0, \ 0 < \delta \leq 1$ **Probably Approximately Correct (PAC)** algorithm

Weighted versions of counting: Exact: #P-complete [Roth 1996],

Approximate: same class as unweighted version [follows from Roth 1996]

How Hard is it to Count/Sample?

Computational complexity of sampling:

Uniform sampling: Polynomial time prob. Turing Machine with NP oracle [Bellare, Goldreich, Petrank 2000]

 $\Pr[y = \text{UniformGenerator}(F)] = c, \text{ where } \begin{cases} c = 0 \text{ if } y \notin R_F \\ c > 0 \text{ and indep of } y \text{ if } y \in R_F \end{cases}$

Almost uniform sampling: Polynomial time prob. Turing Machine with NP oracle [Jerrum, Valiant, Vazirani 1986, also from Bellare, Goldreich, Petrank 2000]

$$\frac{c}{1+\varepsilon} \le \Pr[y = \text{AUGenerator}(F, \varepsilon)] \le c \cdot (1+\varepsilon), \text{ where } \begin{cases} c = 0 \text{ if } y \notin R_F \\ c > 0 \text{ and indep of } y \text{ if } y \in R_F \end{cases}$$

Pr[Algorithm outputs some y] $\geq \frac{1}{2}$, if F is satisfiable

- DPLL based counters [CDP: Birnbaum,Lozinski 1999]
 - DPLL branching search procedure, with partial truth assignments
 - Once a branch is found satisfiable, if t out of n variables assigned, add 2^{n-t} to model count, backtrack to last decision point, flip decision and continue
 - Requires data structure to check if all clauses are satisfied by partial assignment

Usually not implemented in modern DPLL SAT solvers

Can output a lower bound at any time

- DPLL + component analysis [RelSat: Bayardo, Pehoushek 2000]
 - Constraint graph G:

Variables of F are vertices

An edge connects two vertices if corresponding variables appear in some clause of F

- Disjoint components of G lazily identified during DPLL search
- F1, F2, ... Fn : subformulas of F corresponding to components $|R_F| = |R_{F1}| * |R_{F2}| * |R_{F3}| * ...$
- Heuristic optimizations:

Solve most constrained sub-problems first Solving sub-problems in interleaved manner

• DPLL + Caching [Bacchus et al 2003, Cachet: Sang et al 2004, sharpSAT: Thurley 2006]

If same sub-formula revisited multiple times during DPLL search, cache result and re-use it

"Signature" of the satisfiable sub-formula/component must be stored

Different forms of caching used:

- Simple sub-formula caching
- Component caching

Linear-space caching

Component caching can also be combined with clause learning and other easoning techniques at each node of DPLL search tree

WeightedCachet: DPLL + Caching for weighted assignments

Knowledge Compilation based

- Compile given formula to another form which allows counting models in time polynomial in representation size
- Reduced Ordered Binary Decision Diagrams (ROBDD) [Bryant 1986]: Construction can blow up exponentially
- Deterministic Decomposable Negation Normal Form (d-DNNF) [c2d: Darwiche 2004]

Generalizes ROBDDs; can be significantly more succinct

Negation normal form with following restrictions:

Decomposability: All AND operators have arguments with disjoint

support

- Determinizability: All OR operators have arguments with disjoint solution sets
- Sentential Decision Diagrams (SDD) [Darwiche 2011]

Exact Counters: How far do they go?

- Work reasonably well in small-medium sized problems, and in large problem instances with special structure
- Use them whenever possible
 - #P-completeness hits back eventually scalability suffers!

Bounding Counters

[MBound: Gomes et al 2006; SampleCount: Gomes et al 2007; BPCount: Kroc et al 2008]

- Provide lower and/or upper bounds of model count
- Usually more efficient than exact counters
- No approximation guarantees on bounds Useful only for limited applications

Markov Chain Monte Carlo Techniques

- Rich body of theoretical work with applications to sampling and counting [Jerrum,Sinclair 1996]
- Some popular (and intensively studied) algorithms:
 - Metropolis-Hastings [Metropolis et al 1953, Hastings 1970], Simulated Annealing [Kirkpatrick et al 1982]
- High-level idea:
 - Start from a "state" (assignment of variables)
 - Randomly choose next state using "local" biasing functions (depends on target distribution & algorithm parameters)
 - Repeat for an appropriately large number (N) of steps
 - After N steps, samples follow target distribution with high confidence
- Convergence to desired distribution guaranteed only after N (large) steps
- In practice, steps truncated early heuristically

Nullifies/weakens theoretical guarantees [Kitchen,Kuehlman 2007]

Hashing-based Sampling/Counting

- Extremely successful in recent years [CP2013, CAV2013, NIPS2013, DAC 2014, AAAI 2014, UAI 2014, NIPS 2014, ICML 2014, UAI 2015, ICML 2015, AAAI 2016, ICML 2016, IJCAI 2016, ...]
- Focus of remainder of tutorial
- Hash functions:
 - Mappings from a (typically large) domain to a (smaller) range
 - In our context, h: $\{0,1\}^n \rightarrow \{0,1\}^m$, where n > m

More on Hash Functions

- Good deterministic hash function:
 - Inputs distributed uniformly \Rightarrow All cells are small in expectation
 - But solutions of constraints can't be considered random
- Universal hash functions [Carter, Wegman 1977; Sipser 1983]
 - Define a family of hash functions H having some properties Each $h \in H$ is a function: $\{0,1\}^n \to \{0,1\}^m$
 - Choose randomly one hash function h from H
 - For every distribution of inputs, all cells are small and similar in expectation Guarantees probabilistic properties of cell sizes even without knowing distribution of inputs
 - Used by Sipser (1983) for combinatorial optimization, by Stockmeyer (1983) for deterministic approximate counting

Universality of Hash Functions and Complexity

- H(n,m,r): Family of r-universal hash functions
 - $h: \{0,1\}^n \to \{0,1\}^m$
 - For every $X \in \{0,1\}^n$ and every $\alpha \in \{0,1\}^m$ Pr[h(X) = α | h chosen uniformly rand. from H] = 1/2^m
 - For distinct $X_1, \ldots, X_r \in \{0,1\}^n$ and for every $\alpha_1, \ldots, \alpha_r \in \{0,1\}^m$, $\Pr[h(X_1) = \alpha_1 \land \ldots \land h(X_r) = \alpha_r \mid h \text{ rand. From H}] = 1/2^{m}$. Independence-like

Uniformity

• Higher $r \Rightarrow$ Stronger guarantees on size of cells

Lower probability of large variations in cell sizes

- r-wise universality can be implemented using polynomials of degree r-1 in $GF(2^{max(n,m)})$

Can be computationally challenging; say n = r = 10000, m < n

• Lower $r \Rightarrow$ Lower complexity of reasoning about r-universal hashing

2-Universal Hashing: Simple to Compute

- Variables: X₁, X₂, X₃,...., X_n
- To construct h: $\{0,1\}^n \rightarrow \{0,1\}^m$, choose m random XORs
- Pick every variable with prob. $\frac{1}{2}$, XOR them and add 1 with prob. $\frac{1}{2}$
- E.g.: $X_1 \oplus X_3 \oplus X_6 \oplus \dots \oplus X_{n-1}$
- $\alpha \in \{0,1\}^m \rightarrow \text{Set every XOR}$ equation to 0 or 1 randomly
- The cell: F∧XOR (CNF+XOR)

$X_1 \oplus X_3 \oplus X_6 \oplus \dots X_{n-1} = 0$	
$X_1 \oplus X_2 \oplus X_4 \oplus \dots X_{n-1} = 1$	
$X_1 \oplus X_3 \oplus X_5 \oplus \dots X_{n-1} = 0$	m VOD a
$X_2 \bigoplus X_3 \bigoplus X_4 \bigoplus \dots X_{n-1} = 0$	AONS
• • • • •	
$X_1 \oplus X_2 \oplus X_3 \oplus \dots X_{n-1} = 0$	

2-Universal Hashing: Yet Powerful

- Let X be the number of solutions of F in an arbitrarily chosen cell
 What is μ_X, and how much can X deviate from μ_X?
- For every $y \in R_F$, we define $I_y = \begin{cases} 1, & y \text{ is in cell} \\ 0, & \text{otherwise} \end{cases}$
- $X = \sum_{y \in R_F} I_y$ • $\mu_X = \frac{|R_F|}{2^m}$ From random choice of hash function • $\sigma_X^2 \le \mu_X$ From 2-universality of hash function
- This gives the concentration bound:

$$\Pr\left[\frac{\mu_X}{1+\epsilon} \le X \le \mu_X(1+\epsilon)\right] \ge 1 - \frac{\sigma^2}{(\frac{\varepsilon}{1+\epsilon})^2(\mu_X)^2} \ge 1 - \frac{1}{(\frac{\varepsilon}{1+\epsilon})^2\mu_X}$$

Having $\mu_X > k(1+\frac{1}{\epsilon^2})$ gives us $1 - \frac{1}{k}$ lower bound

Hashing-based Sampling

- Bellare, Goldreich, Petrank (BGP 2000)
 - Uniform generator for SAT witnesses:
 - Polynomial time randomized algorithm with access to an NP oracle

$$\Pr[y = BGP(F)] = \begin{cases} 0 \text{ if } y \notin R_F \\ c \ (>0) \text{ if } y \in R_F, \text{ where } c \text{ is independent of } y \end{cases}$$

- Employs n-universal hash functions
 - Works well for small values of n
 - For high dimensions (large n), significant computational overheads

BGP 2000: Bird's Eye View

 2^m partitions of $\{0,1\}^n$

- For right choice of m, all the cells are small (# of solutions $\leq 2n^2$)
- Check if all the cells are small (NP- Query)
- If yes, pick a solution randomly from randomly p ked cell

In practice, the query is too long and complex for large n, and can not be handled by modern SAT Solvers!

Approximate Integration and Sampling: Close Cousins

Seminal paper by Jerrum, Valiant, Vazirani 1986

- Yet, no practical algorithms that scale to large problem instances were derived from this work
 - No scalable PAC counter or almost-uniform generator existed until a few years back
 - The inter-reductions are practically computation intensive
 Think of O(n) calls to the counter when n = 100000

Performance

MCMC

SAT-

Based

Techniques using XOR hash functions

- Bounding counters MBound, SampleCount [Gomes et al. 2006, Gomes et al 2007] used random XORs
 - Algorithms geared towards finding bounds without approximation guarantees
 - Power of 2-universal hashing not exploited
- In a series of papers [2013: ICML, UAI, NIPS; 2014: ICML; 2015: ICML, UAI; 2016: AAAI, ICML, AISTATS, ...] Ermon et al used XOR hash functions for discrete counting/sampling
 - Random XORs, also XOR constraints with specific structures
 - 2-universality exploited to provide improved guarantees
 - Relaxed constraints (like short XORs) and their effects studied
An Interesting Combination: XOR + MAP Optimization

- WISH: Ermon et al 2013
- Given a weight function W: $\{0,1\}^n \to \Re^{\geq 0}$
 - Use random XORs to partition solutions into cells
 - After partitioning into 2, 4, 8, 16, ... cells
 Use Max Aposteriori Probability (MAP) optimizer to find solution
 with max weight in a cell (say, a₂, a₄, a₈, a₁₆, ...)
 - Estimated $W(R_F) = W(a_2)^*1 + W(a_4)^*2 + W(a_8)^*4 + ...$
- Constant factor approximation of $W(R_F)$ with high confidence
- MAP oracle needs repeated invokation O(n.log₂n)
 - MAP is NP-complete
 - Being optimization (not decision) problem), MAP is harder to solve in practice than SAT

XOR-based Counting Sampling

Remainder of tutorial

- Deeper dive into XOR hash-based counting and sampling
- Discuss theoretical aspects and experimental observations
- Leverage power of modern SAT solvers for CNF + XOR clauses (CryptoMiniSAT)
- Based on work published in [2013: CP, CAV; 2014: DAC, AAAI; 2015: IJCAI, TACAS; 2016: AAAI, IJCAI, ...]
- Tutorial to focus mostly on unweighted case, to elucidate key ideas

Agenda (Part II)

- 1. Hashing-based Approaches to Unweighted Model COunting
- 2. Hashing-based Approaches to Sampling
- 3. Design of Efficient Hash Functions
- 4. Summary

Counting Dots

• Solution to constraints

Partitioning into equal "small" cells

Partitioning into equal "small" cells

Estimate = # of solutions (dots) in cell * # of cells

How to Partition?

How to partition into roughly equal small cells of solutions without knowing the distribution of solutions?

2-Universal Hashing [Carter-Wegman 1977]

Partitioning

1. How large is the "small" cell?

2. How do we compute solutions inside a cell?

3. How many cells?

Question 1: Size of cell

- Too large \Rightarrow Hard to enumerate
- Too small \Rightarrow Ratio of variance to mean is very high

$$pivot = 5\left(1 + \frac{1}{\varepsilon^2}\right);$$

Question 2: Solving a cell

- Variables: X₁, X₂, X₃,...., X_n
- To construct h: $\{0,1\}^n \rightarrow \{0,1\}^m$, choose m random XORs
- Pick every variable with prob. $\frac{1}{2}$, XOR them and add 1 with prob. $\frac{1}{2}$
- E.g.: $X_1 \oplus X_3 \oplus X_6 \oplus \ldots \oplus X_{n-1}$
- $\alpha \in \{0,1\}^m \rightarrow \text{Set every XOR}$ equation to 0 or 1 randomly
- The cell: F ∧ XOR (CNF+XOR)

$\begin{array}{l} X_1 \bigoplus X_3 \bigoplus X_6 \bigoplus \dots X_{n-1} = 0 \\ X_1 \bigoplus X_2 \bigoplus X_4 \bigoplus \dots X_{n-1} = 1 \\ X_1 \bigoplus X_3 \bigoplus X_5 \bigoplus \dots X_{n-1} = 0 \\ X_2 \bigoplus X_3 \bigoplus X_4 \bigoplus \dots X_{n-1} = 0 \end{array}$	m XORs
$\dots X_1 \bigoplus X_2 \bigoplus X_3 \bigoplus \dots X_{n-1} = 0$	

Question 3: How many cells?

- We want to partition into 2^{m^*} cells such that $2^{m^*} = \frac{|R_F|}{pivot}$
 - Check for every m = 0, 1..., n if the number of solutions < pivot (function of ε)
 - Stop at the first m where number of solutions < pivot
 - Hash functions must be independent across different checks

• # of SAT calls is O(n)

ApproxMC(F,
$$\varepsilon$$
, δ)

Key Lemmas

Let
$$m^* = \log \frac{|R_F|}{pivot}$$
 (i. e., $2^{m^*} = \frac{|R_F|}{pivot}$)

Lemma 1: The algorithm terminates with $m \in [m^* - 1, m^*]$ with high probability

Lemma 2: The estimate from a randomly picked cell for $m \in [m^* - 1, m^*]$ is correct with high probability

ApproxMC(F,
$$\varepsilon$$
, δ)

Theorem 1:

$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le \operatorname{ApproxMC}(F,\varepsilon,\delta) \le |R_F|(1+\varepsilon)\right] \ge 1-\delta$$

Theorem 2:

ApproxMC(F,
$$\varepsilon$$
, δ) makes $O\left(\frac{n \log \frac{1}{\delta}}{\varepsilon^2}\right)$ calls to NP oracle

51

Runtime Performance of ApproxMC

Can Solve a Large Class of Problems

Large class of problems that lie beyond the exact algorithms but can be computed by ApproxMC

Mean Error: Only 4% (allowed: 75%) 3.6E+161.1E+153.5E+13 1.1E+123.4E+10Count 1.1E+09 -Cachet*1.753.4E+07 -Cachet/1.751.0E+06 —ApproxMC 3.3E+04 1.0E+03 3.2E+01 1.0E+00 10 2030 60 70 80 0 40 5090 **Benchmarks** Mean error: 4% – much smaller than the

theoretical guarantee of 75%

54

Challenge

• Can we reduce the number of SAT calls from O(n)?

Experimental Observations

- ApproxMC "seems to work" even if we do not have independence across different hash functions
 - Can we really give up independence?

Beyond ApproxMC

- We want to partition into 2^m cells
 - Check for every m = 0, 1..., n if the number of solutions < pivot
 - Stop at the first m where number of solutions < pivot
 - Hash functions must be independent across different checks (Stockmeyer 1983, Jerrum, Valiant and Vazirani 1986.....)
- **Suppose:** Hash functions *can be dependent* across different checks
- # of solutions is monotonically non-increasing with m
 - Can find the right value of m by search in any order.
 - Binary search

ApproxMC2: From Linear to Logarithmic SAT calls

 The Proof: Hash functions can be dependent across different checks

- Key Idea: Probability of making a bad choice early on is very small.
 - Inversely (exponentially!) proportional to distance from m*)

ApproxMC2(F,
$$\varepsilon$$
, δ)

Theorem 1:

$$\Pr\left[\frac{|R_F|}{(1+\varepsilon)} \le \operatorname{ApproxMC2}(F,\varepsilon,\delta) \le |R_F|(1+\varepsilon)\right] \ge 1-\delta$$

Theorem 2:

ApproxMC2(F,
$$\varepsilon$$
, δ) makes $O\left(\frac{(\log n) \log \frac{1}{\delta}}{\varepsilon^2}\right)$ calls to NP oracle

Theorem 1 requires a completely new proof.

Runtime Performance Comparison

50

Discrete Uniform Sampling

Hashing-based Approaches

- For right choice of m, large number of cells are "small"
 - "almost all" the cells are "roughly" equal
- Check if a randomly picked cell is "small"
- If yes, pick a solution randomly from randomly picked cell

Key Challenges

- F: Formula X: Set of variables R_F : Solution space
- $R_{F,h,\alpha}$: Set of solutions for $F \land (h(X) = \alpha)$ where • $h \in H(n,m,*)$; $\alpha \in \{0,1\}^m$

- 1. How large is "small" cell ?
- 2. How much universality do we need?
- 3. What is the value of m?

Size of cell

$$pivot = 5\left(1 + \frac{1}{\varepsilon^2}\right);$$

Independence

Theorem (CMV 14):

3-universal hashing is sufficient to provide almost uniformity. (3-universality of XOR-based hash functions due to Gomes et al.)

How many cells?

• Our desire:
$$m = \log \frac{|R_F|}{pivot}$$
 (Number of cells: 2^m)

• But determining $|R_F|$ is expensive (#P complete)

How about approximation?

• ApproxMC(F,
$$\varepsilon$$
, δ) returns C:

$$\Pr\left[\frac{|R_F|}{1+\varepsilon} \le C \le (1+\varepsilon)|R_F|\right] \ge 1-\delta$$
• $q = \log \frac{C}{pivot}$

• Concentrate on m = q-1, q, q+1

UniGen(F,*ε*)

- 1. $C = ApproxMC(F,\varepsilon)$
- 2. Compute pivot
- 3. $q = \log|C| \log pivot$
- 4. for i in {q-1, q, q+1}:
- 5. Choose h **randomly** from H(n,i,3)
- 6. Choose α randomly from $\{0,1\}^m$
- 7. If $(1 \le |R_{F,h,\alpha}| \le pivot)$:
- 8. Pick $y \in R_{F,h,\alpha}$ randomly

One time execution

Run for every sample required

Are we back to JVV (Jerrum, Valiant and Vazirani)?

NOT Really

• JVV makes linear (in n) calls to Approximate counter compared to just 1 in UniGen

 # of calls to ApproxMC is only 1 regardless of the number of samples required unlike JVV

Theoretical Guarantees

• Almost-Uniformity

For every solution $y \in R_F$

$$\forall y \in R_F, \quad \frac{1}{(1+\varepsilon)|R_F|} \le \Pr[y \text{ is output }] \le \frac{(1+\varepsilon)}{|R_F|}$$

- UniGen succeeds with probability ≥ 0.52
 - In practice, success probabiliy ≥ 0.99

• UniGen makes $O(\frac{n}{\epsilon^2})$ calls to NP oracle (SAT solver)

Runtime Performance of UniGen

Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

71

• Total Runs: 4x10⁶; Total Solutions : 16384
Results: Uniformity

• Benchmark: case110.cnf; #var: 287; #clauses: 1263

72

• Total Runs: 4x10⁶; Total Solutions : 16384

Contribution of Hashing-based Approaches

- ApproxMC: The first scalable approximate model counter
- UniGen: The first scalable uniform generator
- Outperforms state-of-the-art generators/counters

Towards Efficient Hash Functions

Parity-Based Hashing

- Variables: X₁, X₂, X₃,...., X_n
- To construct h: $\{0,1\}^n \rightarrow \{0,1\}^m$, choose m random XORs
- Pick every variable with prob. $\frac{1}{2}$, XOR them and add 1 with prob. $\frac{1}{2}$
- E.g.: $X_1 \oplus X_3 \oplus X_6 \oplus \ldots \oplus X_{n-1}$
- $\alpha \in \{0,1\}^m \rightarrow \text{Set every XOR}$ equation to 0 or 1 randomly
- The cell: F ∧ XOR (CNF+XOR)

$X_1 \oplus X_3 \oplus X_6 \oplus \dots X_{n-3} = 0$
$X_1 \oplus X_2 \oplus X_4 \oplus \dots X_{n-1} = 1$
$X_1 \oplus X_3 \oplus X_5 \oplus \dots X_{n-2} = 0$
$X_2 \oplus X_3 \oplus X_4 \oplus \dots X_{n-1} = 0$
•••••
$X_1 \bigoplus X_2 \bigoplus X_3 \bigoplus \dots X_{n-1} = 0$

Parity-Based Hashing

• Avg Length : n/2

Smaller parity constraints

 better performance

How to shorten XOR clauses?

Inspired from Error Correcting Codes

- X = # of solutions in a cell; $\mu_X = \frac{|R_F|}{2^m}$
- 2-universal hashing ensures $\sigma_X^2 \le \mu_X$
- Key result: Using sparse constraints of size O(log n), we have:
 - $\frac{\sigma_X^2}{\mu_X^2}$ is monotonically decreasing with X
 - Challenge: Unable to guarantee $\sigma_X^2 \le \mu_X$; therefore weaker concentration inequalities
- The resulting algorithms require $\theta(n \log n)$ NP calls in comparison to O(log n) calls based on 2-universal hashing algorithms

(Ermon et al 2014, 16; Achlioptas et al. 2015, Asteris et al 2016)

Independent Support

- Set I of variables such that assignments to these uniquely determine assignments to rest of variables (for satisfying assignments)
- If σ_1 and σ_2 agree on I then $\sigma_1 = \sigma_2$
- c \leftrightarrow (a V b) ; Independent Support I: {a, b}
 - {a,c} is NOT an Independent Support
- Key Idea: Hash only on the independent variables
 - Average size of XOR: $\frac{n}{2}$ to $\frac{|I|}{2}$

Formal Definition

Input Formula: F, Solution space: R_F

 $\forall \sigma_1, \sigma_2 \in R_F$, If σ_1 and σ_2 agree on I, then $\sigma_1 = \sigma_2$

$$F(x_1, \dots, x_n) \wedge F(y_1, \dots, y_n) \wedge \bigwedge_{i \mid x_i \in I} (x_i = y_i) \implies \bigwedge_j (x_j = y_j)$$

where $F(y_1, \dots, y_n) = F(x_1 \to y_1, \dots, x_n \to y_n)$

Key Idea

$$F(x_1, \dots, x_n) \wedge F(y_1, \dots, y_n) \wedge \bigwedge_{i \mid x_i \in I} (x_i = y_i) \implies \bigwedge_j (x_j = y_j)$$
$$Q_{F,I} = F(x_1, \dots, x_n) \wedge F(y_1, \dots, y_n) \wedge \bigwedge_{i \mid x_i \in I} (x_i = y_i) \wedge \neg \left(\bigwedge_j (x_j = y_j)\right).$$

Theorem: $Q_{F,I}$ is unsatisfiable if and only if I is independent support

Key Idea

$$H_1 = \{x_1 = y_1\}, \dots, H_n = \{x_n = y_n\}$$
$$\Omega = F(x_1, \dots, x_n) \land F(y_1, \dots, y_n) \land (\neg \bigwedge_j (x_j = y_j))$$

 $I = \{x_i\} \text{ is Independent Support iff } H^I \wedge \Omega \text{ is unsatisfiable} \\ \text{where } H^I = \{H_i \mid x_i \in I\}$

Minimal Unsatisfiable Subset

- Given $\Psi = H_1 \wedge H_2 \cdots H_m \wedge \Omega$
 - Find subset $\{H_{i1}, H_{i2}, \dots, H_{ik}\}$ of $\{H_1, H_2, \dots, H_m\}$ such that $H_{i1} \land H_{i2} \cdots H_{ik} \land \Omega$ is UNSAT Unsatisfiable subset

• Find **minimal** subset $\{H_{i1}, H_{i2}, \cdots H_{ik}\}$ of $\{H_1, H_2, \cdots H_m\}$ such that $H_{i1} \land H_{i2} \cdots H_{ik} \land \Omega$ is UNSAT Minimal Unsatisfiable subset

Minimal Independent Support

$$H_1 = \{x_1 = y_1\}, \dots, H_n = \{x_n = y_n\}$$
$$\Omega = F(x_1, \dots, x_n) \land F(y_1, \dots, y_n) \land (\neg \bigwedge_j (x_j = y_j))$$

 $I = \{x_i\}$ is minimal Independent Support iff H^I is minimal unsatisfiable subset where $H^I = \{H_i | x_i \in I\}$

Minimal Independent Support (MIS)

Minimal Unsatisfiable Subset (MUS)

Impact on Sampling and Counting Techniques

What about complexity

• Computation of MUS: *FP*^{NP}

• Why solve a *FP^{NP}* for almost-uniform generation/approximate counter (PTIME PTM with NP Oracle)

Settling the debate through practice!

Performance Impact on Integration

Performance Impact on Uniform Sampling

■UniGen ■UniGen1 18000 1800 180 18 1.8 0.18 0.018 $= \frac{15}{69536} + \frac{15}{100} + \frac{10}{100} + \frac{1}{100} + \frac{1}{100}$

Future Directions

Extension to More Expressive domains

Efficient hashing schemes

 Extending bit-wise XOR to richer constraint domains provides guarantees but fails to harness progress in solving engines for richer domains

Solvers to handle F + Hash efficiently

- CryptoMiniSAT has fueled progress for SAT domain
- Similar solvers for other domains?

Initial forays with bit-vector constraints and Boolector [AAAI 2016]

- Uses new linear modular hash function that generalizes XOR-based hash functions
- Significant speedups compared to bit-blasted versions

Summary

- Sampling and Integration are fundamental problems in Artificial Intelligence.
 - Applications from probabilistic inference, automatic problem generation to system verification.

 Drawback of related approaches: theoretical guarantees or scalability (Choose one)

 Hashing-based approaches promise theoretical guarantees and scalability

Take Away: Hashing-based Approaches

- Theoretical
 - Discrete Integration
 - Reduction of NP calls from O(n log n) to O(log n)
 - Efficient hash functions based on Independent support
 - Sampling
 - Reduction of Approximate Counting calls from O(n) to O(1)
 - Usage of 2-universal hash functions

Practical

 From problems with tens of variables (before 2013) to hundreds of thousands of variables

Acknowledgements

Daniel Fremont (UCB)

Dror Fried (Rice)

Alexander Ivrii Sharad Malik (IBM) (Princeton)

Rakesh Mistry (IITB)

Sanjit Seshia (UCB)

Mate Soos (CMS)

Thanks!

Questions?

Software and papers are available at http://tinyurl.com/uai16tutorial